SEGUNDA UNIDAD


Pipeta de shali.-Esta pipeta se encuentra de forma grauada y esta diseñada para determinar
la hemoglobina.

 Pipeta de thoma.- esta Pipeta graduada de cristal con incertidumbre de ± 3
diseñada para funcion de como cuentaglóbulos.


Pipeta pasteur.-
Esta es una pipeta de plástico no calibrada pero si graduada que
se utiliza apretando la boquilla de arriba e introduciendo en la probeta, para así poder sacar el líquido.



CAMARA NEUBAUER

La Cámara de Neubauer es un instrumento utilizado en medicina y biología para realizar el recuento de células en un medio líquido, que puede ser un cultivo celular, sangre, orina, líquido cefalorraquídeo, líquido sinovial, etc.

Esta cámara de contaje está adaptada al microscopio de campo claro o al de contraste de fases. Se trata de un portaobjetos que tiene dos zonas ligeramente deprimidas y que en el fondo de las cuales se ha marcado con la ayuda de un diamante una cuadrícula de dimensiones conocidas. Se cubre la cámara con un cubre cámaras que se adhiere por simple tensión superficial.Luego se introduce el líquido a contar, al que generalmente se ha sometido a una dilución previa con un diluyente, por capilaridad entre la cámara y el cubre cámara; puesto que tiene dos zonas esto permite hacer dos recuentos simultáneamente. Para contar las células se observa el retículo al microscopio con el aumento adecuado y se cuentan las células.Con base en la cantidad de células contadas, conociendo el volumen de líquido que admite el campo del retículo, se calcula la concentración de células por unidad de volumen de la muestra líquida inicial.[1]La fórmula de valoración del número de células (válida universalmente) es la siguiente: Partículas por μl=(partículas contadas)/(superficie contada (mm²)∙ profundidad de la cámara(mm)∙ dilución)

 
TÉCNICAS DE CONTAJE CELULAR
Una suspensión celular se caracteriza por presentar un número de partículas microscópicas dispersas en un fluido. Habitualmente será necesario determinar tanto la densidad de las células en la suspensión como el porcentaje de éstas que son viables.
Para determinar la densidad de las células se emplean diferentes técnicas, desde la relativamente simple cámara de contaje celular de la que existen numerosas variantes, entre ellas la que empleamos (cámara de Neubauer), hasta equipos automáticos de contaje celular como el "Cell Coulter" de la empresa Beckman-Coulter.El principio del contador celular se basa en la medida de los cambios en la resistencia eléctrica que se producen cuando una partícula no conductora en suspensión en un electrolito atraviesa un pequeño orificio. Como se puede ver en el esquema, una pequeña abertura entre los electrodos es la zona sensible a través de la que pasan las partículas que se encuentran en suspensión. Cuando una partícula atraviesa el orificio desplaza su propio volumen de electrolito. El volumen desplazado es medido como un pulso de voltaje. La altura de cada pulso es proporcional al volumen de la partícula. controlando la cantidad de la suspensión que circula a través del orificio es posible contar y medir el tamaño de las partículas. Es posible contar y medir varios miles de partículas por segundo, independientemente de su forma, color y densidad.En la unidad de Citometría de flujo y Microscopia Confocal de los Servicios Científico-Técnicos de la Universidad de Barcelona se dispone de contadores celulares.Sin embargo, es posible determinar la densidad celular empleando métodos más sencillos. Nos basta con una cámara de contaje celular, por ej. la cámara de Neubauer, y un microscopio. Una cámara de contaje celular es un dispositivo en el que se coloca una muestra de la suspensión a medir. El dispositivo presenta unas señales que determinan un volumen conocido (x microlitros). Al contar bajo el microscopio el número de partículas presentes en ese volumen se puede determinar la densidad de partículas en la suspensión de origen.

 TINCION DE GRAM:
El cristal violeta (colorante catiónico) penetra en todas las células bacterianas (tanto Gram. positivas como Graham negativas).
El lugol está formado por I2 (
yodo) en equilibrio con KI (yoduro de potasio), el cual está presente para solubilizar el yodo. El I2 entra en las células y forma un complejo insoluble en solución acuosa con el cristal violeta.
La mezcla de alcohol-acetona que se agrega, sirve para realizar la decoloración, ya que en la misma es soluble el complejo I2/cristal violeta. Los organismos Gram positivos no se decoloran, mientras que los Gram negativos sí lo hacen.
Para poner de manifiesto las célulasGram negativas se utiliza una coloración de contraste. Habitualmente es un colorante de color rojo, como la safranina o la 
fucsina. Después de la coloración de contraste las células Gram negativas son rojas, mientras que las Gram positivas permanecen azules.
La safranina puede o no utilizarse, no es crucial para la técnica. Sirve para hacer una tinción de contraste que pone de manifiesto las bacterias Gram negativas. Al término del protocolo, las Gram positivas se verán azul-violáceas y las Gram negativas, se verán rosas (si no se hizo la tinción de contraste) o rojas (si se usó, por ejemplo, safranina)
Esta importante coloración diferencial fue descubierta por Hans Christian Gram en 1884. En este método de tinción, la extensión bacteriana se cubre con solución de uno de los colorantes de violeta de metilo, que se deja actuar durante un lap
so determinado. Se escurre luego el exceso de violeta de metilo y se añade luego una solución de yodo, que se deja durante el mismo tiempo que la anterior; después se lava el portaobjetos con alcohol hasta que éste no arrastre más colorante.
Sigue a tal tratamiento una coloración de contraste, como safranina, fucsina fenicada diluida, pardo Bismarck, pironin B o hasta inclusive verde de malaquita.
Algunos microorganismos retienen el colorante violeta, aún después de tratarlos con un decolorante, y el color no se modifica al añadir éste; otros pierden con facilidad el primer tinte, y toman el segundo.
Los que fijan el violeta, se califican de gram positivos, y los que pierden la primera coloración y retienen la segunda, de gram negativos.
Basándonos pues, en la reacción Gram, podemos clasificar a los microorganismos en uno de los dos grupos.

historia del microscopio

En 1932, Bruche y Johnsson construyen el primer microscopio electrónico a base de lentes electrostáticas. Ese mismo año Knoll y Ruska dan a conocer los primeros resultados obtenidos con un microscopio electrónico Siemens, construido con lentes magnéticas. Así nace el microscopio electrónico. Para 1936 ya se ha perfeccionado y se fabrican microscopios electrónicos que superan en resolución al microscopio óptico.
Estos logros no sólo representan un avance en el campo de la electrónica, sino también en el campo de la Biología, pues son muchas las estructuras biológicas que se han descubierto y que revelan detalles inusitados, al observarlas al microscopio electrónico
microscopio
Un microscopio compuesto es un microscopio óptico que tiene más de un lente. Los microscopios compuestos se utilizan especialmente para examinar objetos transparentes, o cortados en láminas tan finas que se transparentan. Se emplea para aumentar o ampliar las imágenes de objetos y organismos no visibles a simple vista. El microscopio óptico común está conformado por tres sistemas:
El sistema mecánico está constituido por una serie de piezas en las que van instaladas las lentes, que permiten el movimiento para el enfoque.

  • El sistema óptico comprende un conjunto de lentes, dispuestas de tal manera que producen el aumento de las imágenes que se observan a través de ellas.
  • El sistema de iluminación comprende las partes del microscopio que reflejan, transmiten y regulan la cantidad de luz necesaria para efectuar la observación a través del microscopio.
  • La parte mecánica del microscopio comprende el pie, el tubo, el revólver, el asa, la platina, el carro, el tornillo macrométrico y el tornillo micrométrico. Estos elementos sostienen la parte óptica y de iluminación; además, permiten los desplazamientos necesarios para el enfoque del objeto. 

ACTIVIDADES EN EL SALÓN


https://cid-f3c3b9bec3549763.skydrive.live.com/redir.aspx?page=view&resid=F3C3B9BEC3549763!353




EQUIPO DE LABORATORIO


https://cid-f3c3b9bec3549763.skydrive.live.com/redir.aspx?page=view&resid=F3C3B9BEC3549763!351